Isomerization, Exchange, and Ring-Closure Reactions of Glycinate Complexes of Cis-Dimethylplatinum(IV)

NEVILLE H. AGNEW, TREVOR G. APPLETON, and JOHN R. HALL*

Department of Chemistry, University of Queensland, Brisbane, Australia 406 7

Received August 11,1978

There has been much interest in the coordination of amino acids to metal ions [1]. We have recently described the interactions between glycinate and $fac\text{-}PtMe₃(H₂O)⁺₃ [2]$. In these trimethylplatinum(IV) complexes, all of the metal-ligand bonds trans to methyl are intermediate in lability between the bonds made by first transition series ions (e.g., Cu^{2+} , Zn^{2+}) and the inert bonds of "normal" platinum complexes [3]. In cis-dimethylplatinum(IV) complexes both labile (trans to methyl) and inert (cis to methyl) coordination sites are present [4]. The interaction of glycinate with both types of coordination site may therefore be investigated in the one series of compounds.

 $[2, 7]$. . Three isomers of $PtMe₂Br(gly)(H₂O)$, (Ia), (IIa), and (III), have been obtained, as outlined in Scheme **lt .** Initial coordination of glycinate trans to methyl is rapid, but reactions involving coordination sites *cis* to methyl usually require prolonged heating. Thus, when concentrated aqueous solutions of $PtMe₂Br (H₂O)₃⁺$ [8] and sodium glycinate are mixed, cream, sparingly soluble $PtMe₂ Br(gly)(H₂O)$ (isomer (Ia)) precipitates. When heated in water, (Ia) isomerizes to (IIa). When a solution of (Ha) is concentrated, the labile water molecule *trans* to methyl dissociates, and a yellow compound of empirical formula $PtMe₂Br-$ (gly) crystallizes. This compound has been formulated as a dimer, (IVa), with oxygen bridges, analogous to $[PtMe₃(gly)]₂[2]$, but alternative structures with bridging bromide cannot be ruled out (similar comments apply to the related compounds (IVb) and (V) described below).

 \dagger Abbreviations: glyH = glycine, $\text{NH}_3\text{CH}_2\text{CO}_2^-$; lut = 3,5lutidine, $NC_5H_3(CH_3)_2$.

Scheme 1. Formation of isomers of $PtMe₂X(gly)(H₂O)$.

^{*}To whom correspondence should be addressed.

Heating a suspension of glycine in a methanol solution of $[PtMe₂Br(OH)]_n$ [8] gives a mixture of dimers (IVa) and (V), from which the colourless isomer, (V), less soluble in methanol, may be isolated. Since substitution reactions ususally give products with N *trans* to methyl, (V) is probably formed by reaction of a Pt-OH bond *cis* to methyl with the acidic $\overline{NH_3}$ group of the amino acid. (V) dissolves sparingly in water to give the third isomer of $PtMe₂$. $Br(\text{gly})(H_2O)$, (III).

For (III) in D_2O , a rapid (on the NMR time-scale) exchange (1) makes the two Pt-Me groups equivalent. We propose that this reaction occurs by dissociation of the labile water molecule to give a square pyramidal intermediate, followed by migration of the glycinate O-atom to the vacant site $(cf.$, PtMe₃(gly)- $(H₂O)$ [2]). Isomer (IIa) undergoes a similar exchange (2), but more slowly, since the more strongly bound N-atom must now migrate in the fivecoordinate intermediate. No rapid exchange is observed for isomer (Ia), in which the $Pt-H₂O$ bond is not labile.

0-J II

Analogous hydroxo complexes have also been prepared (Scheme 1). White, sparingly-soluble PtMe₂- $(OH)(gly)(H₂O)$ (Ib) precipitates when aqueous solutions of cis-PtMe₂(H₂O)²⁺ [9] and sodium glycinate are mixed. When a solution is heated at $pH \sim 6.5$, (Ib) slowly isomerizes to (IIb) (which undergoes exchange reaction (2) at a comparable rate to (IIa)). The white dimer (IVb), which dissolves sparingly to give (IIb), may also be prepared directly by heating a suspension of $[PHMe₂(OH)₂(H₂O)₂]$ $[9]$ in an aqueous glycine solution (glycine: $Pt = 1:1$). If the glycine/ Pt ratio is increased to 2, the bis(chelate) complex $PtMe₂(gly)₂$ (VII) is obtained. As yet, the third isomer of $PtMe₂$. $(OH)(glv)(H₂O)$, analogous to (III), or other isomers of $PtMe₂(gly)₂$ have not been prepared.

Addition of alkali to solutions of the aqua complexes causes deprotonation to the corresponding isomer of $PtMe₂X(OH)(gly)^{-}$. Since the Pt-OH bond is less labile than $Pt-H₂O$, the exchange reactions (1) and (2) become slower.

Addition of sodium glycinate solution to $PtMe₂X (\text{glv})$ $(H₂O)$ (II) gives quantitatively the mixed chelateunidentate complex $PtMe₂X(gly)₂$ (VIII), but when sodium glycinate is added to a strongly alkaline (pH $>$ 10) solution of isomer (I), equilibrium (3) is set up.

No change occurs if this solution is heated for several hours at $pH > 10$. If pH is reduced to 6.5, equilibrium (3) is rapidly reversed, to give a mixture of PtMe₂X(gly)(H₂O) (I) and glycine. If this solution is now heated, peaks due to $PtMe₂X(gly)₂$ (VIII) slowly grow in the NMR spectrum, but no PtMe,- $(gly)_2$ (VII) is formed. If the pH of a solution of PtMe₂(OH)(gly)(H₂O) (Ib) and glycine is adjusted to \sim 4.5, and the solution is heated, PtMe₂(gly)₂ (VII) forms.

Thus, closure of the chelate ring occurs only under conditions where the appropriate Pt-OH group is protonated to Pt-H₂O⁺ (i.e., by reaction sequence (4)). These observations parallel those of Kukushkin and Gur'yanova [10] on ring closure in PtCl(OH)- $(\text{gly})_2(\text{NH}_3)_2$ and related complexes.

When a solution of $PtMe₂(gly)₂$ (VII) is heated at $pH \geqslant 9$, the chelate rings are cleaved to give a mixture of $PHMe₂(OH)₂(gly)²₂$ (Xb) and $PHMe₂(OH)(gly)²₂$ (VIIIb).

These results indicate that hydroxide is able to compete quite effectively with glycinate 0 for coordination to $Pt(IV)$ at high pH, in spite of the chelate effect, and provide chemical evidence in support of the spectroscopic data given elsewhere [7] for relatively strong covalent bonding of hydroxide to platinum.

Acknowledgement

We thank the Australian Research Grants Committee for supporting this project.

References

- 1 D. R. Williams, *Inorg. Chim. Acta Rev., 6, 123* (1972).
- *2* T. G. Appleton, J. R. Hall and L. Lambert,Inorg. *Chim. Acta. 29, 89* (1978).
- *3* G. E. Glass and R. S. Tobias, J, *Am. Chem. Sot., 89, 6371* (1967).
- *4* J. R. Hall and G. A. Swile, J. *Organometal. Chem., 56,* 419 (1973).
- *T. G. Appleton, H. C. Clark and L. E. Manzer, Coord.* C/rem. *Rev., 10, 335* (1973).
- *6* D. E. Clegg, J. R. Hall and G. A. Swile, J. *Organometal Chem., 38, 403* (1972).
- *7* N. H. Agnew, T. G. Appleton, R. G. Eggins, J. R. Hall and I. J. McMahon, to be submitted for publication.
- *8* J. R. Hall and G. A. Swile, *J. Organometal. Chem.. 139, 403* (1977).
- **J. R. Hall and G. A. Swile,** *J. Organometal. Chem.***, 122,** Cl9 (1976).
- 10 Yu. N. Kukushin and G. P. Gur'yanova, *Zh. Neorg. Khim., 16, 856* (1971).